Write your name here Surname	Other nam	es
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Further M Advanced Paper 1: Core Pure M		tics
Sample Assessment Material for first to	eaching September 2017	Paper Reference 9FM0/01

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for algebraic manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 9 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

S54438A
©2017 Pearson Education Ltd.
1/1/1/1/

Answer ALL questions. Write your answers in the spaces provided.

1. Prove that

$$\sum_{r=1}^{n} \frac{1}{(r+1)(r+3)} = \frac{n(an+b)}{12(n+2)(n+3)}$$

where a and b are constants to be found.

(5)

METHOD 1: method of differences

notice from the sigma notation that we're asked to evaluate a summation - but the fraction with the 1 in the numerator means we can't use any of our standard summations results from CPI .. only left to use method of differences from CP2

4 need to get expression for ur in the question to look like

$$u_r = \frac{1}{(r+1)(r+3)} = \frac{A}{r+1} + \frac{B}{r+3}$$

WAY	1: by	comparing	coefficient	5
-----	-------	-----------	-------------	---

solve simultaneously-calc

equation solver OR by elimination

$$2-0$$
 3A+B= $|$ A+B=0

$$\frac{2A = 1}{42}$$

$$4 = \frac{1}{2}$$

$$0 = \frac{1}{2} + B$$

WAY 2: by substitution

let
$$r=-1$$

=)
$$u_r = \frac{1}{(r+1)(r+3)} = \frac{1}{2(r+1)} = \frac{1}{2(r+3)}$$

$$\therefore \sum_{r=1}^{n} \frac{1}{2(r+1)} = \frac{1}{2(r+3)}$$
-this is a subtraction so can use method of differences

WAY 1: numerical method-sub in r=1,2,3,...,n-1,n

$$u_{n-2}: \frac{1}{2(n-2+1)} - \frac{1}{2(n-2+3)} = \frac{1}{2n-2} - \frac{1}{2n+2}$$

$$u_{n-1}: \frac{1}{2(n-1+1)} - \frac{1}{2(n-1+3)} = \frac{1}{2n} - \frac{1}{2(n+2)}$$

$$u_n: \frac{1}{2(n+1)} - \frac{1}{2(n+3)} = \frac{1}{2n+2} - \frac{1}{2(n+3)}$$

after cancelling all like terms, left with:
$$\frac{1}{4} + \frac{1}{6} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}$$
getting common denominator

$$3(n+2)(n+3) + 2(n+2)(n+3) - 6(n+3) - 6(n+2)$$

$$12(n+2)(n+3)$$

=
$$\frac{5n^2+13n}{12(n+2)(n+3)}$$
 factorise 'n' out

$$= \frac{n(5n+13)}{12(n+2)(n+3)}$$

let
$$f(r) = \frac{1}{2(r+1)}$$
 and $f(r+2) = \frac{1}{2(r+3)}$
evaluate $\sum_{r=1}^{n} f(r) - f(r+2)$ for $r = 1,2,3,...,n = 2,n = 1,n$
 $u_1 : f(1) - f(1+2) = f(1) - f(3)$
 $u_2 : f(2) - f(2+2) = f(2) - f(4)$
 $u_3 : f(3) - f(3+2) = f(3) - f(5)$
 \vdots
 $u_{n-2} : f(n-2) - f(n-2+2) = f(n-2) - f(n)$
 $u_{n-1} : f(n-1) - f(n-1+2) = f(n-1) - f(n+1)$
 $u_n : f(n) - f(n+2) = f(n) - f(n+2)$
after cancelling, left with:
 $f(1) + f(2) - f(n+1) - f(n+2)$
subbing into prev. defined $f(r)$
 $= \frac{1}{2(1+1)} + \frac{1}{2(2+1)} - \frac{1}{2(n+1)} - \frac{1}{2(n+2+1)}$
 $= \frac{1}{4} + \frac{1}{6} - \frac{1}{2(n+2)} - \frac{1}{2(n+3)}$
and manipulating as seen in VAY 1
to get:
 $n(5n+13)$
 $12(n+2)(n+3)$

METHOD 2: by induction

could've treated this as a summations proof by induction - i.e proving ur is true for all NEN (by proving true for n=1,2,...)

Step 1: base case: prove true for
$$n = 1$$

LHS: $\frac{1}{r=1} \frac{1}{(r+1)(r+3)} = \frac{1}{(1+1)(1+3)} = \frac{1}{2(4)} = \frac{1}{8}$

RHS: $\frac{1(\alpha(1)+b)}{12(1+2)(1+3)} = \frac{\alpha+b}{12(3)(4)}$

LHS = RHS

=) $\frac{1}{8} = \frac{\alpha+b}{144}$

Cross multiply

144 = 8(\alpha+b)

a+b = 18 -0

now next inductive step: prove true for n=2

LHS:
$$\frac{2}{5} \cdot \frac{1}{(r+1)(r+3)} = \frac{1}{8} + \frac{1}{(2+1)(2+3)} = \frac{1}{8} + \frac{1}{3(5)}$$

$$= \frac{23}{120}$$

RHS: $2(2a+b)$

$$= \frac{24a+2b}{12(2+2)(2+3)} = \frac{4a+2b}{12(4)(5)}$$

equating LHS=RHS
$$\frac{23}{120} = \frac{4a+2b}{24b}$$

LHS ×2 so can equate numerators
$$46 = 4a+2b = 3$$
Solve © and © simultaneously-calce equation solver or by elimination
$$2a+b=23$$

$$-a+b=18$$

$$= b=18$$

Question 1 continued

$$= \frac{(k+1)(k+2)(5k+18)}{12(k+2)(k+3)(k+4)} = \frac{(k+1)(5k+18)}{12(k+3)(k+4)} = \frac{A1M(v)}{12(k+3)(k+4)}$$

:true for n=k+1

step 4: conclusion step:

Since true for n=1 and 2, if true for n=k and true for n=k+1, then true for all nem

$$=) \sum_{r=1}^{\infty} \frac{1}{(r+1)(r+3)} = \frac{n(5n+13)}{12(n+2)(n+3)}$$

(Total for Question 1 is 5 marks)

2. Prove by induction that for all positive integers n,

$$f(n) = 2^{3n+1} + 3(5^{2n+1})$$

is divisible by 17

(6)

prove by induction - prove conjecture is true for all ne N - here dealing with a pivisibility proof

step 1: base case : prove true for n=1

$$f(1) = 2^{3(1)+1} + 3(5^{2(1)+1})$$

$$= 2^4 + 3(5^3)$$

$$= 16 + 3(125)$$

$$= 391 = 17(23)$$

:. true for n=1

step 2: assumption step: assume true for n=k

Step 3: induction step

WAY 1: indices manipulation

$$f(k+1) = 2^{3(h+1)+1} + 3(5^{2(h+1)+1})$$

split indices up to get f(k)

$$= 2^{3k+1} \cdot 2^3 + 3(5^{2k+1})5^2$$

$$=8(2^{3h+1})+3(5^{2h+1})25$$

need to split the '25' coefficient such that factor f(k) out and get an expression that is a multiple of 15

$$\begin{array}{c|c}
25 \\
8 & 17 \\
= 8 \left(2^{3k+1} + 3 \left(5^{2k+1} \right) \right) + 17 \left(3 \left(5^{2k+1} \right) \right) \\
= 8 \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) + 17 \left(3 \left(5^{2k+1} \right) \right)
\end{array}$$

which is divisible by 17

: true for n=k+1

```
WAY 2: more methodical f(k+1) - f(k)

f(k+1) - f(k) = 2^{3k+1} + 3(5^{2k+3}) - 2^{3k+1} - 3(5^{2k+1})

Splitting up the indices to get f(k)

= 2^{3k+1}(2^3) + 3(5^{2k+1})(5^2) - 2^{3k+1} - 3(5^{2k+1})

= 8(2^{3k+1}) + 25(3(5^{2k+1})) - 2^{3k+1} - 3(5^{2k+1})

Collect like 'terms'

= 7(2^{3k+1}) + 24(3(5^{2k+1}))

Split '24' coefficient so factorise f(k) AND get a multiple of 17

f(k+1) - f(k) = 7(2^{3k+1} + 3(5^{2k+1})) + 17(3(5^{2k+1}))

= f(k+1) = 8(2^{3k+1}) + 17(3(5^{2k+1}))

\therefore f(k+1) = 8(2^{3k+1}) + 17(3(5^{2k+1}))
```

step 4: conclusion step since true for n=k and true for n=k+1, then true for all nEN

My Maths Cloud

Question 2 continued
cosxsin _v
1084
sin(x + 1/) is is in the single sin (x + 1/) is in the sin (x + 1/)
2.
* F- F-
$\times = -b + \sqrt{b^2 - 4ac}$
4
AW Nathe Chall
(Total for Question 2 is 6 marks)

Year 1 Complex numbers - solving quartic equations by inspection

3.
$$f(z) = z^4 + az^3 + 6z^2 + bz + 65$$

where a and b are real constants.

Given that z = 3 + 2i is a root of the equation f(z) = 0, show the roots of f(z) = 0 on a single Argand diagram.

(9)

notice we're given a quartic, which according to the Fundamental Law of Algebra can have the following combination of roots:

- · 4 real roots
- · 2 real roots and a complex conjugate pair
- · 2 complex conjugate pairs

4 because already given a complex root, 2, know that the second root, 2, must be the complex conjugate of 2,

METHOD 1: by inspection

forming a quadratic out of the complex conjugate pair

WAY 1: roots of polynomial equan

UAV 2: factor theorem -if (x-2) is a factor, +(2)=0

general rule: 22-(a+B)+aB

(2-3+2i)(2-3-2i)=0

where 2+2*= 22a = 2(3)=6

expand

 $\frac{22*}{26} = \frac{2}{6}a^2 + \frac{2}{6}b^2 = 2^2 + 3^2$

22-(3+21+3-21)+(3+21)(3-21)

and to get the quartic-need to multiply our quadratic by another quadratic-eq. Az2+Bz+C (NOTE: in capitals so doesn't get confused by lover case in equation

... Solve BY INSPECTION-compare Known coefficients

=)
$$B = 2$$

::unknown = $(2^{2}+22+5)$
(alc equan solver or quadratic formula
 $2 = -2 \pm \sqrt{(2)^{2}-4(1)(5)}$
= $-2 \pm \sqrt{4-20} = -2 \pm \sqrt{-16}$
= $-1 \pm 2i$

=) 4 roots: 3±2ij-1±2i-plot on Argand diagram - complex numbers (a+bi) represented with (artesian coordinates

METHOD 2: using factor theorem to get full quartic -then calc equation solver for roots

```
using fact that if (2-a) is a factor then f(2)=0-for given 2=3+2i
  f(3+2i) = 0
(3+2i)^4 + \alpha (3+2i)^3 + 6(3+2i)^2 + b(3+2i) + 65 = 0
         evaluate on calc
-119+120i+\alpha(-9+46i)+6(5+12i)+36+26i+65=0
           expand brackets
  -119+120i-9a+46ai+30+72i+3b+2bi+65=0
           equate real and imaginary terms
     ...real:
                               ... imaginary:
   -119-9a+30+3b+65=0
                               120+46a+72+2b=0
     =) 9a - 3b = -119 + 30 + 65
                                  =) 46a+2b=-192 -2
       =) 9q-3b=-24-0
             solve simultaneously on calc equation solver
                     =) a, b = -4
```

Sub into f(z)

Question 3 continued

$$f(2) = 2^4 - 42^3 + 62^2 - 42 + 65$$

solve for roots using calc equation solver - QUARTICS

$$=)2_1=3+2i_1 2_2=3-2i_1 2_3=-|+2i_1 2_4=-|-2i|$$

plotting on the Argand diagram

NOTE: would usually be able to do 'roots of polynomial equations' formulae but given 'b' is part of 'ExB' which we don't have enough information to analyse

Pearson Edexcel Level 3 Advanced GCE in Further Mathematics

Sample Assessment Materials - Issue 1 - July 2017 © Pearson Education Limited 2017

(Total for Question 3 is 9 marks)

4.

Figure 1

The curve C shown in Figure 1 has polar equation

$$r = 4 + \cos 2\theta \qquad 0 \leqslant \theta \leqslant \frac{\pi}{2}$$

At the point A on C, the value of r is $\frac{9}{2}$

The point N lies on the initial line and AN is perpendicular to the initial line.

The finite region R, shown shaded in Figure 1, is bounded by the curve C, the initial line and the line AN.

Find the exact area of the shaded region R, giving your answer in the form $p\pi + q\sqrt{3}$ where p and q are rational numbers to be found.

(9)

looking at the exact area we're asked to find-remember that with polar areas have to consider these radially

ofirst evaluate area of the polar segment : remember formula

for integration of polar curves:
$$\frac{1}{2}\int_{\alpha}^{\beta} r^2 d\theta$$

know that $\alpha = 0$ but for the β at A need to sub in given $r = \frac{9}{2}$ into the polar equation to get the corresponding θ value for β

$$\frac{9}{7}$$
 = 4 + cos 20

=)
$$\cos 2\theta = \frac{1}{2}$$

taking cos-1 of both sides

=)
$$2\theta = (05^{-1}(\frac{1}{2}) = \frac{\pi}{3}((2\pi - \frac{\pi}{3}) = \frac{5\pi}{3} - \frac{\text{out of range}}{2\pi})$$

Question 4 continued

Sub into formula for polar integration

=)
$$\frac{1}{2} \int_{0}^{\pi/6} (4 + \cos 2\theta)^{2} d\theta$$

expand inside the bracket

$$= \frac{1}{2} \int_{0}^{\pi/6} (16 + 8\cos 2\theta + \cos^{2} 2\theta) d\theta$$

know can't really integrate trig powers - using cos double angle rearranged

$$\cos^2\theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta$$

 $\cos^2 2\theta = \frac{1}{2} + \frac{1}{2}\cos 4\theta$

$$= \frac{1}{2} \int_{0}^{\pi/6} (16 + 8\cos 2\theta + \frac{1}{2} + \frac{1}{2}\cos 4\theta) d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/6} \left(\frac{33}{2} + 8\cos 2\theta + \frac{1}{2}\cos 4\theta \right) d\theta$$

integrate using
$$\int \cos k\theta = \frac{1}{k} \sinh \theta + C$$

=
$$\frac{1}{2} \left[\frac{33}{2} \theta + 4 \sin 2\theta + \frac{1}{8} \sin 4\theta \right]_{0}^{\pi/6}$$

=
$$\frac{1}{2}$$
 \[\left[\frac{33}{2} \left(\eta \right) + 4 \sin \left(2 \times \frac{\pi}{6} \right) + \frac{1}{8} \sin \left(4 \times \frac{\pi}{6} \right) \right] -

$$\left[\frac{33}{2}(0) + 4\sin(2\times0) + \frac{1}{8}\sin(4\times0)\right]$$

$$= \frac{1}{2} \left(\frac{11}{4} \pi + 2 \sqrt{3} + \frac{\sqrt{3}}{16} \right) - (0)$$

now area of triangle OAN-using fact that we know that r= 9/2; using

dfn of polar coordinate: (rcosq rsina)

know that
$$0N = x = \frac{9}{2} \cos(\frac{\pi}{6}) = \frac{913}{4}$$

$$AN = y = \frac{9}{2} \sin(\frac{\pi}{6}) = \frac{9}{4}$$

=) area of triangle =
$$\frac{1}{2} \left(\frac{9 \sqrt{3}}{2} \right) \left(\frac{9}{4} \right) = \frac{8 \sqrt{3}}{32}$$

(Total for Question 4 is 9 marks)

subbing all into overall strategy for R $=\frac{11\pi}{8}-\frac{48\sqrt{3}}{32}$ simplify $R = \frac{11}{8}\Pi - \frac{3J3}{2}$

$$R = \frac{11}{8}\Pi - \frac{3J_3}{2}$$

Where $\rho = \frac{11}{8} \cdot 9 = -3/2$

The pond is leaking at a constant rate of 20 litres per day.

It is suspected that contaminated water flows into the pond at a constant rate of 25 litres per day and that the contaminated water contains 2 grams of pollutant in every litre of water.

It is assumed that the pollutant instantly dissolves throughout the pond upon entry.

Given that there are x grams of the pollutant in the pond after t days,

(a) show that the situation can be modelled by the differential equation,

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 50 - \frac{4x}{200 + t} \tag{4}$$

(b) Hence find the number of grams of pollutant in the pond after 8 days.

(5)

(c) Explain how the model could be refined.

(1)

(a) noticing this is a typical 'filling the container' 100F question, so using the following format:

rate of pollutant out:
$$\frac{x}{1000+5t} \times \frac{20}{1000+5t} = \frac{4x}{200+t}$$

$$=) \frac{dx}{dt} = 50 - \frac{4x}{200+t}$$

(b) now asked to solve the above 10DE - getting in form $\frac{dx}{dt} + Py = Q$

$$\frac{dx}{dt} + \frac{4x}{200+t} = 50$$

Usee straight away can't use solving by separation of variables as it involves the sum rather than the product of two expressions.

4 seeing if can use reverse product rule on LHS

: can't use reverse product rule 4+(1) + 700+f x -only option is to introduce 1.f: e | Pat = e | 200+t at $= e^{4\ln(200+t)} = e^{\ln(200+t)^4}$ $= (200+t)^4$ multiplying by 1.F $\frac{d}{dt}(x) = \frac{dx}{dt}(v)$ $(200+t)^{4} \frac{dx}{dt} + (200+t)^{4} \left(\frac{4x}{200+t}\right) = 50(200+t)^{4}$ and checking for reverse product rule (1) reurite LMS as $\frac{d}{dt}(x(200+t)^4) = 50(200+t)^4$ integrate both sides $x(200+t)^4 = \int 50(200+t)^4 dt$ G.5 x (200+t) = 10 (200+t) +c subbing in logical initial conditions: when t=0, x=00(200+0)4 = 10(200+0)5+C =) $1.6 \times 10^9 = 10(3.2 \times 10^9) + C$ =) $1.6 \times 109 = 3.2 \times 10^{12} + C$ $=) C = -3.199... \times 10^{12}$

2.5
$$x(200+t)^4 = 10(200+t)^5 - 3.2 \times 10^{12}$$

and subbing in $t=8$
 $x(200+8)^4 = 10(200+8)^5 - 3.2 \times 10^{12}$
 $\div (200+8)^4$
 $x = 10(200+8) - 3.2 \times 10^{12}$
 $\frac{(200+8)^4}{(200+8)^4}$
 $= 370.3916... = 3709(3 s.f)$

 $= -3.2 \times 10^{12}$

·the ro	istic that the poll te of leaking could	lutant dissolves be made to var	straight away up y uith the volum	e of wa
in the	pond			
	. 8 [†] C	osy + cosxsiny		
	sin(x + N) // S		4	
	5 + P 5 + P			
ץ	x = -b	$+\sqrt{\frac{2}{5}-4ac}$	π%,	
296	7.40 000			
70		(+)		
of 9xey	2 A A	Final		
		D-00		
	Mai	Fac		

6.

$$f(x) = \frac{x+2}{x^2+9}$$

(a) Show that

$$\int f(x)dx = A \ln(x^2 + 9) + B \arctan\left(\frac{x}{3}\right) + c$$

where c is an arbitrary constant and A and B are constants to be found.

(4)

(b) Hence show that the mean value of f(x) over the interval [0, 3] is

$$\frac{1}{6}\ln 2 + \frac{1}{18}\pi$$

(3)

(c) Use the answer to part (b) to find the mean value, over the interval [0, 3], of

$$f(x) + \ln k$$

where k is a positive constant, giving your answer in the form $p + \frac{1}{6} \ln q$, where p and q are constants and q is in terms of k.

(2)

(a) notice asked to integrate a fractional expression - looking at the three

ways to do this:

4a. Can I split the numerator?

Is there a single term in the denominator?

4b. Can I do partial fractions?

Does the denominator factorise?

4c. Can I do algebraic division?

Is the fraction improper?

explained more in detail on pg. 21 (end of question)

... can split the numerator and evaluate the two

separate integrals:

$$\int \frac{x+2}{x^2+q} dx = \int \frac{x}{x^2+q} dx + 2 \int \frac{1}{x^2+q} dx$$

Using integration by reverse chain rule (because the numerator is a scalar multiple of the derivative of denominator)

consider:
$$ln(x^2+9)$$

differentiate (CHAIN RVLF):
$$\frac{2x}{x^2+9}$$

$$\frac{1}{2}\ln(x^2+q)$$

2 looking at the different formula book integrations

=)
$$\int \frac{x+2}{x^2+9} dx = \frac{1}{2} \ln(x^2+9) + \frac{2}{3} \arctan(\frac{x}{3}) + C$$

(b) remembering the formula for mean value of a function:

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(x) dx - \text{Subbing in limits in question}$$

$$= \frac{1}{3-0} \int_{0}^{3} \frac{x+2}{x^{2}+q} dx = \frac{1}{3} \int_{0}^{3} \frac{x+2}{x^{2}+q} dx$$
know the indefinite integration of above

know the indefinite integration of above from part (a) - need to evaluate this at the limits

$$= \frac{1}{3} \left[\frac{1}{2} \ln \left(x^2 + 9 \right) + \frac{2}{3} \arctan \left(\frac{x}{3} \right) \right]_0^3$$

$$= \frac{1}{3} \left\{ \left[\frac{1}{2} \ln \left((3)^2 + 9 \right) + \frac{2}{3} \tan^{-1} \left(\frac{3}{3} \right) \right] - \left[\frac{1}{2} \ln \left(0^2 + 9 \right) + \frac{2}{3} \tan^{-1} (6) \right] \right\}$$

$$= \frac{1}{3} \left[\frac{1}{2} \ln (18) + \frac{2}{3} \left(\frac{\pi}{4} \right) \right] - \left[\frac{1}{2} \ln (9) + 0 \right]$$

$$= \frac{1}{3} \left(\frac{1}{2} \ln(18) - \frac{1}{2} \ln(9) + \frac{\pi}{6} \right)$$

using quotient rule on the logs

$$= \frac{1}{3} \left(\frac{1}{2} \ln \left(\frac{18}{9} \right) + \frac{\pi}{6} \right)$$

$$= \frac{1}{6} \ln (2) + \frac{\pi}{18}$$

(c) notice now we're asked to evaluate a geometric consideration -: have to increase the mean value by In(k)

=
$$\frac{1}{6}ln(2) + \frac{\pi}{18} + ln(k)$$
 but need all in terms together, so get common denominator

Question 6 continued

$$= \frac{1}{6}\ln(2) + \frac{6}{6}\ln(k) + \frac{\pi}{18}$$
factorise $\frac{1}{6}$ out

$$=\frac{1}{6}(\ln(2)+6\ln(k))+\frac{\pi}{18}$$

using log power and addition rule

$$=\frac{1}{6}(\ln 2k^6)+\frac{\pi}{18}$$

=)
$$\rho = \frac{\pi}{18}$$
, $q = 2k^6$

Reminders:

Students find fractions tough as fractions can be so many types.

Check first (and throughout the question) if you can simplify by:

using basic indices rules to simplify and expand <u>brackets</u>. $x^a \times x^b = x^{a+b}$ $\frac{x^a}{x^b} = x^{a-b}$ $\frac{3}{5x} means \frac{3}{5}x^{-1}$. $\frac{3}{5x} (\sqrt[3]{3}) \text{ or } \sqrt[3]{x^a} = x^{\frac{5}{5}}$

- Factorising and maybe cancel <u>first</u>
 Is there a single term in denominator?
- split fractions using $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$ or $(a+b)c^{-1}$

Then ask yourself:

- 1. Is it an easy power type? $\int x^n dx = \frac{x^{n+1}}{n+1}$ 2. Is it \ln (natural logarithm)? Form $\int \frac{f_n^{(k)}}{f_n^{(k)}} dx$ To recognize these, the power in the denominator is (almost always) 1. When you bring the denominator up to the numerator using negative power indices rule you get a power of -1. By adding one to the power and dividing it, you'll end up dividing by zero which you can't do

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + C$$

Method: copy ln(denominator). Remember ignore then differentiate to check you get what is inside the integral - correct with numbers only, not variables and only correct by multiplying or dividing. We can ignore the pink part since the derivative 'pops' out when we differentiate and we know when we differentiate our answer it must be what is inside

- s it bring up and harder power type? Bring the power up and becomes the form $\int f'(x)f(x)^n dx = \frac{f(x)^{n+1}}{n+1} + C$ Recognisable by a power in the denominator other than
- $\int \frac{4x}{(2x^2-1)^3} = \int 4x(2x^2-10)^{-3} dx \text{ etc}$ Is it Partial fractions! Recognisable by products in the

nator.
Form
$$1\frac{...}{(cx+d)(ex+f)} = \frac{A}{cx+d} + \frac{B}{ex+f}$$

Form 2 $\frac{...}{(dx+e)(fx+g)^2} = \frac{A}{dx+e} + \frac{B}{fx+g} + \frac{C}{(fx+g)^2}$ (only advanced courses have this form)

Form 3
$$\frac{\dots}{(dx+e)(fx^2+g)} = \frac{A}{dx+e} + \frac{Bx+C}{fx^2+g}$$

- Is it divide first? Recognisable by two or more terms in the denominator and also where we have the matching highest powers in both numerator and denominator or a higher power in the numerator
- Rewriting/adapting fraction in a clever way (split up the numerator to get two fractions)
- Is it inverse trig? (may need to complete the square first) Either use the inverse trig results below or use a trig

$$\int \frac{1}{\sqrt{a^2 - (bx)^2}} dx = \frac{1}{b} \sin^{-1} \left(\frac{bx}{a}\right) + C$$

$$\int -\frac{1}{\sqrt{a^2-(bx)^2}} dx = \frac{1}{b} \cos^{-1}\left(\frac{bx}{a}\right) + C$$

$$\int \frac{1}{a^2 + (bx)^2} dx = \frac{1}{ab} \tan^{-1} \left(\frac{bx}{a}\right) + C$$

(Total for Question 6 is 9 marks)

Figure 2

Figure 2 shows the image of a gold pendant which has height 2 cm. The pendant is modelled by a solid of revolution of a curve C about the y-axis. The curve C has parametric equations

$$x = \cos \theta + \frac{1}{2}\sin 2\theta,$$
 $y = -(1 + \sin \theta)$ $0 \le \theta \le 2\pi$

(a) Show that a Cartesian equation of the curve C is

$$x^2 = -(y^4 + 2y^3)$$

(b) Hence, using the model, find, in cm³, the volume of the pendant.

(4)

(4)

(a) this should remind us of converting trig parametric equations to Cartesian equations from Pure Yr 2:

want to manipulate each of

manipulateusing sin double angle-sin 20 = 2 sin 8 cos 8

$$x = \cos\theta + \frac{1}{2}(2\sin\theta\cos\theta)$$

$$x = \cos\theta + \sin\theta \cos\theta$$

$$x = \cos\theta(1 + \sin\theta)$$

notice this is -y'

$$x = \cos\theta(-y)$$

$$=)$$
 $\cos\theta = -\frac{x}{y}$

... y function next:

$$y=-1-\sin\theta = \sin\theta = -y-1$$

DO NOT WRITE IN THIS AREA

Question 7 continued

Subbing into trig identity

$$\left(\frac{-x}{y}\right)^2 + \left(-y - 1\right)^2 \equiv 1$$

expand

$$\frac{x^{2}}{y^{2}} + y^{2} - 2y + 1 = 1$$

$$= \frac{x^{2}}{y^{2}} = -y^{2} + 2y$$

$$= \frac{xy^{2}}{y^{2}} = -y^{4} + 2y^{3}$$

$$= \frac{x^{2}}{y^{2}} = -\frac{y^{4} + 2y^{3}}{y^{4}}$$

$$= \frac{x^{2}}{y^{2}} = -\frac{y^{4} - 2y^{3}}{y^{4}}$$

(b) notice need to sub into formula for volumes of revolution about the γ -axis : $\gamma = \pi \int_{-\infty}^{\beta} x^2 dy$

=)
$$V = \pi \int_{-2}^{0} -(q^4 + 2q^3) dy$$

integrate above

$$= \pi \left[-\left(\left(\frac{4^{5}}{5} \right) + \frac{1}{2} 4^{4} \right) \right]_{-2}^{0}$$

$$= -\pi \left\{ \left[\frac{0^{5}}{5} + \frac{1}{2} (0)^{4} \right] - \left[\left(\frac{(-2)^{5}}{5} + \frac{1}{2} (-2)^{4} \right] \right\} \right\}$$

$$= -\pi \left(-\frac{8}{5} \right) = \frac{8\pi}{5} \text{ cm}^{3}$$

NOTE: usually could're used the volumes of revolution formula for parametrically defined curves - but the fact that we're asked to find the Cartesian equation for C hints we should use the standard formula for volumes of revolution about the y-axis ANO using the vol. of rev. for parametrics gets really horrible

Question 7 continued
$_{i}$ cosxsin $_{i}$
sin(x + 1/1 is
\$ 8
$\frac{1}{3}$
× × × × × × × × × × × × × × × × × × ×
Av Mathe Clau

Question 7 continued
Question / continued
$\sim 10^{-2} cosxsin_{V}$
sin(x + y) ii
\times $\times = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$
ATT MOTION OF STEEL
(Total for Question 7 is 8 marks)

8. The line l_1 has equation $\frac{x-2}{4} = \frac{y-4}{-2} = \frac{z+6}{1}$

The plane Π has equation x - 2y + z = 6

The line l_2 is the reflection of the line l_1 in the plane Π .

Find a vector equation of the line l_2

(7)

notice we're asked to reflect the line & in the plane 1 4 aim to get 2 points that are on the reflected li(i.e l,) and find the vector equation through them

4 first point point of intersection between e and T-notice given I in Cartesian formneed its scalar product form L/II/IIII

and ℓ_1 in Cartesian-need its vector parametric formal (negated numerator = position vector denominator = direction vector) $\ell_1 : r = \binom{2}{4} + \lambda \binom{4}{-2}$ of which general coordinate:

$$\ell_1: r = \begin{pmatrix} 2\\4\\-6 \end{pmatrix} + \lambda \begin{pmatrix} 4\\-2\\1 \end{pmatrix}$$

of which general coordinate:

$$\Upsilon = \begin{pmatrix} 2 + 4\lambda \\ 4 - 2\lambda \\ -6 + \lambda \end{pmatrix}$$

for p.o.i - sub (into 1

$$\begin{pmatrix} 2+4\lambda \\ 4-2\lambda \\ -6+\lambda \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 6$$

evaluate dot product:

expand

collect like terms:

Question 8 continued

sub into general Q coordinate to get p.o.i

$$\begin{pmatrix} 2 + 4(2) \\ 4 - 2(2) \\ -6 + 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 0 \\ -4 \end{pmatrix} - call it A$$

second point: reflection of a given point (position vector of L,) through

the plane

can do this by finding the p.o.i between the plane and the line perpendicular to the plane — its position vector = (2)

need p.o. i between lperp. and M- Sub

general coordinate into scalar product for 1

$$\begin{pmatrix} 2+t \\ 4-2t \\ -6+t \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 1 \end{pmatrix} = 6$$

evaluate dot product

expand brackets

collect like terms

considering if from point to plane t=3, then from plane to reflected

Question 8 continued

point this must be another t=3 .. the point on lperp. where t=6

$$2+6$$
 $-6+6$
 -8
 $-6+6$
 -8
 -6
 -8
 -6

now just need vector equation through these:

take ANY of the two points, A or B as the position vector and the direction

$$Vector = \begin{pmatrix} 0 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ -8 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \\ 8 \\ -4 \end{pmatrix} \div 2 = \begin{pmatrix} 4 \\ 4 \\ -2 \end{pmatrix}$$

=)
$$r = \begin{pmatrix} 10 \\ 0 \\ -4 \end{pmatrix} + k \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$$

Question 8 continued
osy + cosxsiny
sin(x + V) ii
3
$\times = -b + \sqrt{b^2 - 4ac}$
The state of the s
My Mathe Claur
Ty Flaths Otout
(Total for Question 8 is 7 marks)

Year 2 Modelling with differential equations - solving and evaluating second order differential equations

9. A company plans to build a new fairground ride. The ride will consist of a capsule that will hold the passengers and the capsule will be attached to a tall tower. The capsule is to be released from rest from a point half way up the tower and then made to oscillate in a vertical line.

The vertical displacement, x metres, of the top of the capsule below its initial position at time t seconds is modelled by the differential equation,

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} + 4\frac{\mathrm{d}x}{\mathrm{d}t} + x = 200\cos t, \quad t \geqslant 0$$

where m is the mass of the capsule including its passengers, in thousands of kilograms.

The maximum permissible weight for the capsule, including its passengers, is 30000 N.

Taking the value of g to be $10 \,\mathrm{ms^{-2}}$ and assuming the capsule is at its maximum permissible weight,

- (a) (i) explain why the value of m is 3
 - (ii) show that a particular solution to the differential equation is

$$x = 40\sin t - 20\cos t$$

(iii) hence find the general solution of the differential equation.

(8)

(b) Using the model, find, to the nearest metre, the vertical distance of the top of the capsule from its initial position, 9 seconds after it is released.

(4)

(a) (i) see that mass, weight and go are all LINKED by the formula: W=mg

subbing in
$$H_{max} = 30,000$$
 - but in thousands so 30 kg and $9 = 10$

$$30 = m(10)$$

 $\div 10 \div 10$
 $=) m = 3$

=)
$$3\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + x = 200\cos t$$

Lii) WAY 1: by substitution into 200E

noticing that we could sub the given P.S into LMS of the 200F-if it equals the RMS then we've proved it's a P.S

$$\frac{d^2x}{dt^2} = -40 \sin t + 20 \cos t$$

Question 9 continued

LHS:

3 (-40sint+20cost) +4 (40cost+20sint) +(40sint-20cost)

expand brackets

-|20sint+60cost+|60cost+80sint+40sint-20cost collect like terms

= 200 cost = RHS : X = 40 sint - 20 cost

HAY 2: using P. I table

Form of $f(x)$	Form of particular integral
k	λ
ax + b	$\lambda + \mu x$
$ax^2 + bx + c$	$\lambda + \mu x + \nu x^2$
ke ^{px}	λe^{px}
m cos ωx 💃	$\lambda \cos \omega x + \mu \sin \omega x$
$m \sin \omega x$	$\lambda \cos \omega x + \mu \sin \omega x$
$m\cos\omega x + n\sin\omega x$	$\lambda \cos \omega x + \mu \sin \omega x$

let x= >cost+ usint dx = - Asint + most

dzx = - 2 cost-msint

sub into 200E

3 (-Acost-Msint) + 4 (-Asint+Mcost) + Acost + Msint = 200 cost

expand brackets

-37cost - 3msint - 47sint + 4mcost + 7cost + msint = 200cost

... Comparing sines:

... comparing cos:

-3m - 4x +m = 0 collect like terms -2m-47=0 -0 $-3\lambda + 4\mu + \lambda = 200$

collect like terms

-27+4M=200-0

solve oand o simultaneously

8m-47 = 400 2x2-0 -2m-4x=0

10m = 400

+10

M=40

-2(40)-43=0 sub into o

=) 47 = -80

Question 9 continued

$$\lambda = -20$$

Subbing into initial 'x' P.I

solve - calc equation solver or quadratic formula

$$m = -4 \pm \sqrt{(4)^2 - 4(3)(1)}$$

=)
$$m = -1/3$$
 or -1

4 tho real roots - so subbing into associated general A.E formula:

(b) susing model suggests have to sub initial conditions in:

and at
$$t=0$$
, $\frac{dx}{dt}=0$:

differentiate G.S - using d, (ekt) = kekt

Question 9 continued

solve simultaneously-calcequen solver or by substitution

subbing these into G.S (part (iii))

subbing when
$$t=9$$

 $x = 50e^{-9} - 30e^{-1/3(9)} + 40sin(9) - 20cos(9)$

$$= 33m$$

(Total for Question 9 is 12 marks)

TOTAL FOR PAPER IS 75 MARKS